
Research Statement

Sam Lau (lau@ucsd.edu)
October 2022

Figure 1: My research goal is to design,
implement, and evaluate novel tools for
program visualization. This research
is guided by challenges surfaced from
studies of instructor workflows and
computational notebooks.

In today’s interconnected world, people rely on data to make im-
portant decisions: for companies designing their websites, for cities
deciding where to build new roads, and for scientists figuring out
how to stop the spread of a disease. Because of this, many people are
motivated to learn data science: the study of drawing conclusions
from data using programs. However, learning data science is diffi-
cult for novices because code is opaque—current programming tools
don’t show how code transforms the data. How can we facilitate
learning by making code and data more visible?

To address this question, my research uses methods from human-
computer interaction (HCI). This research agenda is summarized in
Figure 1. One line of work examines instructors of technical courses,
surfacing previously unreported logistical challenges [1] and peda-
gogical negotiations [2] that arise as courses are developed. Another
line of research studies computational notebook systems, including
the first survey and proposed design space of computational note-
books [3], and a novel tool for using notebooks to create interactive
webpages [4]. Studying the people and existing tools involved in
computing and data science courses enables me to pursue my over-
arching research goal: designing interactive program visualization
tools that demonstrate how code changes data. For example, the
Data Theater system enables instructors to quickly prototype in-
teractive instructional animations using a concise domain-specific
language [5]; TweakIt lets data analysts use code directly within their
existing spreadsheets [6]; the Pandas Tutor system automatically
generates explanatory diagrams from pandas code [7]; and the Code-
Hound system tracks pedagogical dependencies in course materi-
als [8]. This statement explains Pandas Tutor, TweakIt, and describes
future directions for my research.

Pandas Tutor: Step-by-Step Diagrams for Data Science Code

Figure 2: In this lecture slide on group-
ing and aggregating, the instructor
manually created a data display and
drew annotations.

Instructors use diagrams to help explain code. For example, pro-
gramming instructors hand-draw diagrams to visualize the program
state during execution. Likewise, data science instructors use dia-
grams to explain what table manipulation operations do. For ex-
ample, when filtering rows, an instructor might cross out rows of a
data table. Instructors currently make these diagrams manually, by
displaying the data and adding annotations using a drawing tool, as



research statement – sam lau 2

depicted in Figure 2. However, this process doesn’t represent the link
between code and data—whenever the data change, the instructor
needs to redraw the annotations. Drawing diagrams manually is also
time-consuming. Although instructors may wish to use diagrams to
help students debug their code, it is impractical to do so when there
are hundreds of students who need help with many different bugs.

In response, I developed Pandas Tutor, a system that automati-
cally creates step-by-step diagrams for pandas code [7]. pandas is the
standard library for data manipulation in Python, so it is commonly
taught in introductory data science courses. When a user enters
pandas code into Pandas Tutor, the system uses a combination of
static and runtime analysis to display both data tables and explana-
tory annotations, similar to what an expert data science instructor
would draw, as shown in Figure 3.

Figure 3: Pandas Tutor automatically
draws diagrams similar to ones that
expert instructors would manually
create. This example recreates the
grouping and aggregation operations
shown in Figure 2.

Pandas Tutor is available for public use as a web application and
as a Jupyter extension. Instructors can use Pandas Tutor to prepare
diagrams for their lecture slides, and to explain code that they write
live during class. Students can use Pandas Tutor to understand and
debug code as they work on assignments. In the ten months since its
launch in December 2021, Pandas Tutor has served over 38,000 users
across 166 countries and is now actively used in large introductory
data science courses, including DSC 10 at UC San Diego.

TweakIt: Supporting Programmers Who
Reuse and Tweak Code

Data analysts across a variety of diverse disciplines—chemists, ma-
terial scientists, and cognitive psychologists—routinely wish to use
code to transform data, explore hypotheses, and evaluate findings.
Although these analysts use code, they don’t see themselves as pro-
fessional programmers. Their coding workflows consist less about
writing code and more about tweaking it: in a typical workflow, data
analysts cobble together various snippets of code from colleagues or
online sites like Stack Overflow and make small edits to these snip-
pets with trial-and-error incantations. Rather than asking users to
change how they behave, how can we design tools that support the
highly goal-oriented coding workflows they prefer?

To address this need, I developed TweakIt, a system that supports
analysts as they reuse and tweak code [6]. TweakIt uses live pre-
views to let analysts preview the effects of their code directly inside
their usual spreadsheet environments. For example, an analyst who
wants to use the BioPython package in their spreadsheet can open
the TweakIt sidebar, paste in example code from the package docu-
mentation, and click on code expressions to preview the code outputs



research statement – sam lau 3

directly in the spreadsheet, as shown in Figure 4.

Figure 4: With TweakIt, analysts can
reuse code examples from the web
directly in their spreadsheet. 1) When
an analyst clicks on a code expression,
2) TweakIt puts the output of the ex-
pression directly into the spreadsheet.
3) When an analyst clicks on a differ-
ent expression, TweakIt updates the
spreadsheet automatically.

In a usability study with data analysts, I found that analysts val-
ued TweakIt’s support for their preferred guess-and-check coding
workflows. TweakIt encouraged code exploration and analysts’ con-
fidence without decreasing their effectiveness and efficiency. As a
whole, analysts reported many day-to-day tasks that they felt could
be better addressed using code, from extracting values from loan
applications to summarizing cell phone chip performance results.

Future Research Agenda

By continuing to pursue my research interests, I can not only ad-
vance state-of-the-art tools for program visualization but also di-
rectly help students. I’m especially interested in expanding the vo-
cabulary of visualizations that systems can automatically create. For
example, different instructors draw different diagrams—where one
instructor might prefer to use arrows, another instructor might in-
stead rely on color-coding. I want to develop a specification language
for Pandas Tutor visualizations so that instructors can customize the
visualizations for their own classrooms. This would enable instruc-
tors to automatically generate code visualizations in the way that
they prefer, rather than requiring instructors to use the visualization
styles that I built into Pandas Tutor.

Developing this grammar of data table visualizations could also
make Pandas Tutor’s approach useful in more contexts. For example,
the current version of Pandas Tutor is difficult to use for professional
data scientists who need to work with many large datasets at once,
which would cause Pandas Tutor to display too many annotations to
make sense of. Allowing users to specify how Pandas Tutor draws
annotations would also enable them to reduce the number of annota-
tions for more complex analyses.

I envision a future where both instructors and learners can fluently
create explanatory diagrams through program visualization tools.
Just as data visualizations enable people to understand complex
data, I believe that program visualizations have the potential to help
people understand complex programs. Through my research, I seek
to make this vision a reality for instructors and learners everywhere.



research statement – sam lau 4

References

[1] Sam Lau, Justin Eldridge, Shannon Ellis, Aaron Fraenkel, Marina
Langlois, Suraj Rampure, Janine Tiefenbruck, and Philip J. Guo.
The Challenges of Evolving Technical Courses at Scale: Four Case
Studies of Updating Large Data Science Courses. In Proceedings of
the Ninth ACM Conference on Learning@ Scale, pages 201–211, 2022.

[2] Sam Lau, Deborah Nolan, Joseph E. Gonzalez, and Philip J. Guo.
How Computer Science and Statistics Instructors Approach Data
Science Pedagogy Differently: Three Case Studies. In Proceed-
ings of the 53rd ACM Technical Symposium on Computing Science
Education, Providence, RI, USA, March 2022. Association for
Computing Machinery.

[3] Sam Lau, Ian Drosos, Julia M. Markel, and Philip J. Guo. The
Design Space of Computational Notebooks: An Analysis of 60

Systems in Academia and Industry. In 2020 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), pages
1–11. IEEE, 2020.

[4] Samuel Lau and Joshua Hug. Nbinteract: Generate interactive
web pages from Jupyter notebooks. Master’s thesis, Master’s
thesis, EECS Department, University of California, Berkeley, 2018.

[5] Sam Lau and Philip J. Guo. Data Theater: A live programming
environment for prototyping data-driven explorable explana-
tions. In Workshop on Live Programming (LIVE), 2020.

[6] Sam Lau, Sruti Srinivasa Srinivasa Ragavan, Ken Milne, Titus
Barik, and Advait Sarkar. TweakIt: Supporting End-User Pro-
grammers Who Transmogrify Code. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, pages 1–12,
2021.

[7] Sam Lau and Philip J. Guo. Pandas Tutor - visualize Python
pandas code. https://pandastutor.com/.

[8] Sam Lau and Philip J. Guo. CodeHound: Helping Instructors
Track Pedagogical Code Dependencies in Course Materials (forth-
coming). In Proceedings of the 2022 ACM SIGPLAN International
Symposium on SPLASH-E, 2022.


